ordering relationship - Definition. Was ist ordering relationship
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist ordering relationship - definition

STATEMENT THAT ALL SETS OF POSITIVE NUMBERS CONTAINS A LEAST ELEMENT
Well-ordering axiom; Well Ordering Principle; Well ordering principal; Well ordering principle; Least integer principle

amorous         
  • Teresa Cristina]] in [[Petrópolis]], 1887
  • Men kissing intimately.
  • Bonding]] between a mother and child.
  • Holding hands is an example of affective intimacy between humans.
  • Personal intimate relationship is often crowned with marriage.
PHYSICAL OR EMOTIONAL INTIMACY
Sexual relationship; Intimacy; Personal relationship; Kanoodling; Long-term relationship; Lover's; Stages of Intimate Relationships; Beloved (love); Human intimacy; Sexual relationships; Intimate relationships; Synchronised Adoration; Amorous; Long term relationship; Intimate partner; Serious relationship; Couple (relationship); Emotional relationship; Emotional relation; Long relationship; Couplehood
If you describe someone's feelings or actions as amorous, you mean that they involve sexual desire.
ADJ: usu ADJ n
Intimacy         
  • Teresa Cristina]] in [[Petrópolis]], 1887
  • Men kissing intimately.
  • Bonding]] between a mother and child.
  • Holding hands is an example of affective intimacy between humans.
  • Personal intimate relationship is often crowned with marriage.
PHYSICAL OR EMOTIONAL INTIMACY
Sexual relationship; Intimacy; Personal relationship; Kanoodling; Long-term relationship; Lover's; Stages of Intimate Relationships; Beloved (love); Human intimacy; Sexual relationships; Intimate relationships; Synchronised Adoration; Amorous; Long term relationship; Intimate partner; Serious relationship; Couple (relationship); Emotional relationship; Emotional relation; Long relationship; Couplehood
·noun The state of being intimate; close familiarity or association; nearness in friendship.
amorous         
  • Teresa Cristina]] in [[Petrópolis]], 1887
  • Men kissing intimately.
  • Bonding]] between a mother and child.
  • Holding hands is an example of affective intimacy between humans.
  • Personal intimate relationship is often crowned with marriage.
PHYSICAL OR EMOTIONAL INTIMACY
Sexual relationship; Intimacy; Personal relationship; Kanoodling; Long-term relationship; Lover's; Stages of Intimate Relationships; Beloved (love); Human intimacy; Sexual relationships; Intimate relationships; Synchronised Adoration; Amorous; Long term relationship; Intimate partner; Serious relationship; Couple (relationship); Emotional relationship; Emotional relation; Long relationship; Couplehood
adj. (rare) amorous of

Wikipedia

Well-ordering principle

In mathematics, the well-ordering principle states that every non-empty set of positive integers contains a least element. In other words, the set of positive integers is well-ordered by its "natural" or "magnitude" order in which x {\displaystyle x} precedes y {\displaystyle y} if and only if y {\displaystyle y} is either x {\displaystyle x} or the sum of x {\displaystyle x} and some positive integer (other orderings include the ordering 2 , 4 , 6 , . . . {\displaystyle 2,4,6,...} ; and 1 , 3 , 5 , . . . {\displaystyle 1,3,5,...} ).

The phrase "well-ordering principle" is sometimes taken to be synonymous with the "well-ordering theorem". On other occasions it is understood to be the proposition that the set of integers { , 2 , 1 , 0 , 1 , 2 , 3 , } {\displaystyle \{\ldots ,-2,-1,0,1,2,3,\ldots \}} contains a well-ordered subset, called the natural numbers, in which every nonempty subset contains a least element.